

GOSAT SYMPOSIUM

What Processes Control CO₂ Sinks?

- Carbon dioxide (CO₂) is the primary anthropogenic greenhouse gas
 - The CO₂ concentration has increased by ~25% from ~280 to 375 ppm since the beginning of the industrial age
- Only half of the CO₂ produced by fossil fuel combustion in the past 30 years has remained in the atmosphere.
 - Where are the sinks?
- Outstanding Issues:
 - Why does the atmospheric buildup vary substantially with uniform emission rates
 - What are the relative roles of CO₂ sinks
 - · Oceans vs land ecosystems
 - North American and Eurasian sinks?
 - How will carbon sinks respond to climate change?

The Orbiting Carbon Observatory (OCO)

- OCO will measure CO₂ from space with the precision, resolution, and coverage needed to quantify CO₂ sources and sinks
 - Simultaneous spectroscopic observations of CO₂
 and O₂ used to estimate the column integrated
 CO₂ dry air mole fraction, X_{CO2}
 - Precision: ~1 ppm (0.3%) on regional scales
 - 1:15 PM polar orbit, 16 day repeat cycle

Team Members

- Principal Investigator: David Crisp, JPL
- Project Manager: Rod Zieger, JPL
- Instrument provider: Hamilton Sundstrand
- Spacecraft provider: Orbital Sciences Corp.
- International Science Team
- Launch date: mid 2008

Precise CO₂ Measurements Needed to Constrain Surface Fluxes

Space-based X_{CO2} measurements with precisions of 1–2 ppm (0.3–0.5%) on regional scales will:

- Resolve pole to pole X_{CO2} gradients on regional scales
- Resolve the X_{CO2} seasonal cycle in the Northern Hemisphere
- Improve constraints on CO₂ fluxes (sources and sinks) compared to the current knowledge
 - Reduce regional scale flux uncertainties from >2000 gC m⁻² yr⁻¹ to < 200 gC m⁻² yr⁻¹
 - Reduce continental scale flux uncertainties below 30 gC m⁻² yr⁻¹

Making Precise CO₂ Measurements from Space

- High resolution spectra of reflected sunlight in near IR CO₂ and O₂ bands used to retrieve the column average CO₂ dry air mole fraction, X_{CO2}
 - 1.61 μm CO₂ bands Column CO₂ with maximum sensitivity near the surface
 - O₂ A-band and 2.06 μm CO₂ band
 - Surface pressure, albedo, atmospheric temperature, water vapor, clouds, aerosols
- · Why high spectral resolution?
 - Enhances sensitivity, minimizes biases

Clouds/Aerosols, Surface Pressure

Column CO₂

OCO Spatial Sampling Strategy

The OCO spatial sampling strategy has been designed to provide precise, biasfree estimates of X_{CO2} on regional scales at monthly intervals

- Contiguous sampling not needed
 - Chemical Transport Models infer sources and sinks from spatial and temporal gradients in X_{CO2}
 - Have resolutions of 1° to 5°
 - Winds transport CO₂ over large areas as it is mixed through the column
- X_{CO2} soundings must be collected at high spatial resolution
 - Maximizes the number of cloud-free samples in partly cloudy regions
 - Minimizes errors due to spatial inhomogeneities within each footprint

OCO Sampling over a 16-Day Repeat Cycle

Value of Column Measurements

CO₂ Column Measurements complement the existing surface measurement nework.

CO₂-rich (poor) plumes can be carried over surface measurement sites, but will not be missed by high density column measurements like those to be collected by OCO.

OCO Observing Modes

Nadir Observations: tracks local nadir

- + Small footprint (< 3 km²) isolates cloud-free scenes and reduces biases from spatial inhomogeneities over land
- Low Signal/Noise over dark ocean
- Glint Observations: views "glint" spot
 - + Improves Signal/Noise over oceans
 - More interference from clouds

Target Observations

- Tracks a stationary surface calibration site to collect large numbers of soundings
- Data acquisition schedule:
 - Alternate between Nadir and Glint on 16-day global sampling repeat cycles
 - Acquire ~1 Target observation each day

OCO Will Fly in the A-Train

OCO files at the head of the A-Train, 15 minutes ahead of the Aqua platform

- 1:15 PM equator crossing time yields same ground track as AQUA
- Near noon orbit yields high SNR CO₂ and O₂ measurements in reflected sunlight
- CO₂ concentrations are near their diurnally-averaged values near noon
- Maximizes opportunities of coordinated science and calibration activities

OCO Fills a Critical Measurement Gap

OCO will provide precise global measurements of X_{CO2} over the range of spatial scales to reduce CO_2 flux uncertainties by up a factor of 100 on regional to continental scales.

Mission Architecture

Single Instrument (Hamilton Sundstrand)

- Incorporates 3 bore-sighted, high resolution, grating spectrometers
 - O₂ 0.765 μm A-band, R=17,000
 - CO2 1.61 μm band, R=20,000
 - CO2 2.06 μm band R=20,000

· Heritage: GALEX, SORCE

October 2007 Launch from Vandenburg

Mission Operations

- Mission Operations (Orbital MOC)
- High latitude station for downlink station

How Well Can the OCO Measure X_{CO2}? -Validation of the OCO Retrieval Algorithm

Combining high spectral resolution and spectral coverage provides independent constraints on surface pressure, aerosols, surface reflectance, and CO₂, minimizing systematic errors.

 $X_{\rm CO2}$ retrieval errors are shown as a function of albedo and aerosol optical depth for 3 solar zenith angle, $\theta_{\rm o}$ Single-sounding $X_{\rm CO2}$ retrieval errors exceed 2 ppm (0.5%) only for extreme cases ($\theta_{\rm o}$ >75°, τ > 0.3)

Validation Program Ensures Accuracy and Minimizes Biases

- · Ground-based in-situ measurements
 - NOAA CMDL Flask/Tower Network
- Aircraft measurements of CO₂ profile
 - Coordinated with COBRA, INTEX, follow-on
 - CNRS Aerocarb
- Uplooking FTS measurements of X_{CO2}
 - Measure same bands as flight instrument
 - 3 new and 4 upgraded stations funded by OCO
- Laboratory spectroscopy
 - Spectral line databases for CO₂, O₂

Summary

- CO₂ is the principal human generated driver of climate change
- Accurate forecasting of future climate requires an improved understanding of the global carbon cycle and its interaction with the climate system
- The Orbiting Carbon Observatory (OCO) will make global, space-based observations of atmospheric CO₂ with the precision, resolution, and coverage needed to understand sources and sinks
- OCO data will provide critical information for decision makers
 - Scientific basis for policy formulation
 - Guide for carbon management strategies and Treaty monitoring

-90

